Probability Density Function - Dependent Variables and Change of Variables

Dependent Variables and Change of Variables

If the probability density function of a random variable X is given as fX(x), it is possible (but often not necessary; see below) to calculate the probability density function of some variable Y = g(X). This is also called a “change of variable” and is in practice used to generate a random variable of arbitrary shape fg(X) = fY using a known (for instance uniform) random number generator.

If the function g is monotonic, then the resulting density function is

Here g−1 denotes the inverse function.

This follows from the fact that the probability contained in a differential area must be invariant under change of variables. That is,

or

For functions which are not monotonic the probability density function for y is

where n(y) is the number of solutions in x for the equation g(x) = y, and g−1k(y) are these solutions.

It is tempting to think that in order to find the expected value E(g(X)) one must first find the probability density fg(X) of the new random variable Y = g(X). However, rather than computing

one may find instead

The values of the two integrals are the same in all cases in which both X and g(X) actually have probability density functions. It is not necessary that g be a one-to-one function. In some cases the latter integral is computed much more easily than the former.

Read more about this topic:  Probability Density Function

Famous quotes containing the words dependent, variables and/or change:

    The female of the genus homo is economically dependent on the male. He is her food supply.
    Charlotte Perkins Gilman (1860–1935)

    Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear. We are tending toward the condition of science and aspiring to do it. The artist works out his own formulas; the interest of science lies in the art of making science.
    Paul Valéry (1871–1945)

    If you live in Europe ... things change ... but continuity never seems to break. You don’t have to throw the past away.
    Nadine Gordimer (b. 1923)