Prime Ideals For Commutative Rings
An ideal P of a commutative ring R is prime if it has the following two properties:
- If a and b are two elements of R such that their product ab is an element of P, then a is in P or b is in P,
- P is not equal to the whole ring R.
This generalizes the following property of prime numbers: if p is a prime number and if p divides a product ab of two integers, then p divides a or p divides b. We can therefore say
- A positive integer n is a prime number if and only if the ideal nZ is a prime ideal in Z.
Read more about this topic: Prime Ideal
Famous quotes containing the words prime, ideals and/or rings:
“Baltimore lay very near the immense protein factory of Chesapeake Bay, and out of the bay it ate divinely. I well recall the time when prime hard crabs of the channel species, blue in color, at least eight inches in length along the shell, and with snow-white meat almost as firm as soap, were hawked in Hollins Street of Summer mornings at ten cents a dozen.”
—H.L. (Henry Lewis)
“War is pillage versus resistance and if illusions of magnitude could be transmuted into ideals of magnanimity, peace might be realized.”
—Marianne Moore (18871972)
“Ah, Christ, I love you rings to the wild sky
And I must think a little of the past:
When I was ten I told a stinking lie
That got a black boy whipped....”
—Allen Tate (18991979)