Prime Ideals For Commutative Rings
An ideal P of a commutative ring R is prime if it has the following two properties:
- If a and b are two elements of R such that their product ab is an element of P, then a is in P or b is in P,
- P is not equal to the whole ring R.
This generalizes the following property of prime numbers: if p is a prime number and if p divides a product ab of two integers, then p divides a or p divides b. We can therefore say
- A positive integer n is a prime number if and only if the ideal nZ is a prime ideal in Z.
Read more about this topic: Prime Ideal
Famous quotes containing the words prime, ideals and/or rings:
“If one had to worry about ones actions in respect of other peoples ideas, one might as well be buried alive in an antheap or married to an ambitious violinist. Whether that man is the prime minister, modifying his opinions to catch votes, or a bourgeois in terror lest some harmless act should be misunderstood and outrage some petty convention, that man is an inferior man and I do not want to have anything to do with him any more than I want to eat canned salmon.”
—Aleister Crowley (18751947)
“Institutional psychiatry is a continuation of the Inquisition. All that has really changed is the vocabulary and the social style. The vocabulary conforms to the intellectual expectations of our age: it is a pseudo-medical jargon that parodies the concepts of science. The social style conforms to the political expectations of our age: it is a pseudo-liberal social movement that parodies the ideals of freedom and rationality.”
—Thomas Szasz (b. 1920)
“Ah, Christ, I love you rings to the wild sky
And I must think a little of the past:
When I was ten I told a stinking lie
That got a black boy whipped....”
—Allen Tate (18991979)