Pappus of Alexandria - Collection

The characteristics of Pappus's Collection are that it contains an account, systematically arranged, of the most important results obtained by his predecessors, and, secondly, notes explanatory of, or extending, previous discoveries. These discoveries form, in fact, a text upon which Pappus enlarges discursively. Very valuable are the systematic introductions to the various books which set forth clearly in outline the contents and the general scope of the subjects to be treated. From these introductions we are able to judge of the style of Pappus's writing, which is excellent and even elegant the moment he is free from the shackles of mathematical formulae and expressions. At the same time, his characteristic exactness makes his collection a most admirable substitute for the texts of the many valuable treatises of earlier mathematicians of which time has deprived us. We proceed to summarize briefly the contents of that portion of the Collection which has survived, mentioning separately certain propositions which seem to be among the most important.

We can only conjecture that the lost Book I, like Book II, was concerned with arithmetic, Book III being clearly introduced as beginning a new subject.

The whole of Book II (the former part of which is lost, the existing fragment beginning in the middle of the 14th proposition) discusses a method of multiplication from an unnamed book by Apollonius of Perga. The final propositions deal with multiplying together the numerical values of Greek letters in two lines of poetry, producing two huge numbers approximately equal to 2*1054 and 2*1038.

Book III contains geometrical problems, plane and solid. It may be divided into five sections:

  1. On the famous problem of finding two mean proportionals between two given lines, which arose from that of duplicating the cube, reduced by Hippocrates of Chios to the former. Pappus gives several solutions of this problem, including a method of making successive approximations to the solution, the significance of which he apparently failed to appreciate; he adds his own solution of the more general problem of finding geometrically the side of a cube whose content is in any given ratio to that of a given one.
  2. On the arithmetic, geometric and harmonic means between two straight lines, and the problem of representing all three in one and the same geometrical figure. This serves as an introduction to a general theory of means, of which Pappus distinguishes ten kinds, and gives a table representing examples of each in whole numbers.
  3. On a curious problem suggested by Euclid I.21.
  4. On the inscribing of each of the five regular polyhedra in a sphere.
  5. An addition by a later writer on another solution of the first problem of the book.

Of Book IV the title and preface have been lost, so that the program has to be gathered from the book itself. At the beginning is the well-known generalization of Euclid I.47, then follow various theorems on the circle, leading up to the problem of the construction of a circle which shall circumscribe three given circles, touching each other two and two. This and several other propositions on contact, e.g. cases of circles touching one another and inscribed in the figure made of three semicircles and known as arbelos ("shoemakers knife") form the first division of the book; Pappus turns then to a consideration of certain properties of Archimedes's spiral, the conchoid of Nicomedes (already mentioned in Book I as supplying a method of doubling the cube), and the curve discovered most probably by Hippias of Elis about 420 B.C., and known by the name, τετραγωνισμός, or quadratrix. Proposition 30 describes the construction of a curve of double curvature called by Pappus the helix on a sphere; it is described by a point moving uniformly along the arc of a great circle, which itself turns about its diameter uniformly, the point describing a quadrant and the great circle a complete revolution in the same time. The area of the surface included between this curve and its base is found – the first known instance of a quadrature of a curved surface. The rest of the book treats of the trisection of an angle, and the solution of more general problems of the same kind by means of the quadratrix and spiral. In one solution of the former problem is the first recorded use of the property of a conic (a hyperbola) with reference to the focus and directrix.

In Book V, after an interesting preface concerning regular polygons, and containing remarks upon the hexagonal form of the cells of honeycombs, Pappus addresses himself to the comparison of the areas of different plane figures which have all the same perimeter (following Zenodorus's treatise on this subject), and of the volumes of different solid figures which have all the same superficial area, and, lastly, a comparison of the five regular solids of Plato. Incidentally Pappus describes the thirteen other polyhedra bounded by equilateral and equiangular but not similar polygons, discovered by Archimedes, and finds, by a method recalling that of Archimedes, the surface and volume of a sphere.

According to the preface, Book VI is intended to resolve difficulties occurring in the so-called "lesser astronomical works" (μίκρός άστρονομούμενος), i.e. works other than the Almagest. It accordingly comments on the Sphaerica of Theodosius, the Moving Sphere of Autolycus, Theodosius's book on Day and Night, the treatise of Aristarchus On the Size and Distances of the Sun and Moon, and Euclid's Optics and Phaenomena.

Read more about this topic:  Pappus Of Alexandria