Overdetermined System

Overdetermined System

In mathematics, a system of linear equations is considered overdetermined if there are more equations than unknowns. The terminology can be described in terms of the concept of constraint counting. Each unknown can be seen as an available degree of freedom. Each equation introduced into the system can be viewed as a constraint that restricts one degree of freedom.

Therefore the critical case occurs when the number of equations and the number of free variables are equal. For every variable giving a degree of freedom, there exists a corresponding constraint. The overdetermined case occurs when the system has been overconstrained — that is, when the equations outnumber the unknowns. In contrast, the underdetermined case occurs when the system has been underconstrained — that is, when the number of equations is less than the number of unknowns.

Read more about Overdetermined System:  Homogeneous Case, Non-homogeneous Case, Exact Solutions, Approximate Solutions, In General Use, See Also

Famous quotes containing the word system:

    For the universe has three children, born at one time, which reappear, under different names, in every system of thought, whether they be called cause, operation, and effect; or, more poetically, Jove, Pluto, Neptune; or, theologically, the Father, the Spirit, and the Son; but which we will call here, the Knower, the Doer, and the Sayer. These stand respectively for the love of truth, for the love of good, and for the love of beauty.
    Ralph Waldo Emerson (1803–1882)