Mathematical Induction - Proof of Mathematical Induction

Proof of Mathematical Induction

The principle of mathematical induction is usually stated as an axiom of the natural numbers; see Peano axioms. However, it can be proved in some logical systems. For instance, it can be proved if one assumes:

  • The set of natural numbers is well-ordered.
  • Every natural number is either zero, or n+1 for some natural number n.
  • For any natural number n, n+1 is greater than n.

To derive simple induction from these axioms, we must show that if P(n) is some proposition predicated of n, and if:

  • P(0) holds and
  • whenever P(k) is true then P(k+1) is also true

then P(n) holds for all n.

Proof. Let S be the set of all natural numbers for which P(n) is false. Let us see what happens if we assert that S is nonempty. Well-ordering tells us that S has a least element, say t. Moreover, since P(0) is true, t is not 0. Since every natural number is either zero or some n+1, there is some natural number n such that n+1=t. Now n is less than t, and t is the least element of S. It follows that n is not in S, and so P(n) is true. This means that P(n+1) is true, and so P(t) is true. This is a contradiction, since t was in S. Therefore, S is empty.

It can also be proved that induction, given the other axioms, implies well-ordering.

Read more about this topic:  Mathematical Induction

Famous quotes containing the words proof of, proof, mathematical and/or induction:

    When children feel good about themselves, it’s like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.
    Stephanie Martson (20th century)

    The moment a man begins to talk about technique that’s proof that he is fresh out of ideas.
    Raymond Chandler (1888–1959)

    An accurate charting of the American woman’s progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of time—but like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.
    Susan Faludi (20th century)

    They relieve and recommend each other, and the sanity of society is a balance of a thousand insanities. She punishes abstractionists, and will only forgive an induction which is rare and casual.
    Ralph Waldo Emerson (1803–1882)