General State Space
Many results for Markov chains with finite state space can be generalized to chains with uncountable state space through Harris chains. The main idea is to see if there is a point in the state space that the chain hits with probability one. Generally, it is not true for continuous state space, however, we can define sets A and B along with a positive number ε and a probability measure ρ, such that
Then we could collapse the sets into an auxiliary point α, and a recurrent Harris chain can be modified to contain α. Lastly, the collection of Harris chains is a comfortable level of generality, which is broad enough to contain a large number of interesting examples, yet restrictive enough to allow for a rich theory.
Read more about this topic: Markov Chain
Famous quotes containing the words general, state and/or space:
“The general feeling was, and for a long time remained, that one had several children in order to keep just a few. As late as the seventeenth century . . . people could not allow themselves to become too attached to something that was regarded as a probable loss. This is the reason for certain remarks which shock our present-day sensibility, such as Montaignes observation, I have lost two or three children in their infancy, not without regret, but without great sorrow.”
—Philippe Ariés (20th century)
“Wisdom has lost repute because it so often applies to a state of affairs that no longer exists.”
—Mason Cooley (b. 1927)
“Time in his little cinema of the heart
Giving a première to Hate and Pain;
And Space urbanely keeping us apart.”
—Philip Larkin (19221986)