Markov Chain - Finite State Space - Time-homogeneous Markov Chain With A Finite State Space

Time-homogeneous Markov Chain With A Finite State Space

If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, Pk.

The stationary distribution π is a (row) vector, whose entries are non-negative and sum to 1, that satisfies the equation

In other words, the stationary distribution π is a normalized (meaning that the sum of its entries is 1) left eigenvector of the transition matrix associated with the eigenvalue 1.

Alternatively, π can be viewed as a fixed point of the linear (hence continuous) transformation on the unit simplex associated to the matrix P. As any continuous transformation in the unit simplex has a fixed point, a stationary distribution always exists, but is not guaranteed to be unique, in general. However, if the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. Additionally, in this case Pk converges to a rank-one matrix in which each row is the stationary distribution π, that is,

where 1 is the column vector with all entries equal to 1. This is stated by the Perron–Frobenius theorem. If, by whatever means, is found, then the stationary distribution of the Markov chain in question can be easily determined for any starting distribution, as will be explained below.

For some stochastic matrices P, the limit does not exist, as shown by this example:

Because there are a number of different special cases to consider, the process of finding this limit if it exists can be a lengthy task. However, there are many techniques that can assist in finding this limit. Let P be an n×n matrix, and define

It is always true that

Subtracting Q from both sides and factoring then yields

where In is the identity matrix of size n, and 0n,n is the zero matrix of size n×n. Multiplying together stochastic matrices always yields another stochastic matrix, so Q must be a stochastic matrix (see the definition above). It is sometimes sufficient to use the matrix equation above and the fact that Q is a stochastic matrix to solve for Q. Including the fact that the sum of each the rows in P is 1, there are n+1 equations for determining n unknowns, so it is computationally easier if on the one hand one selects one row in Q and substitute each of its elements by one, and on the other one substitute the corresponding element (the one in the same column) in the vector 0, and next left-multiply this latter vector by the inverse of transformed former matrix to find Q.

Here is one method for doing so: first, define the function f(A) to return the matrix A with its right-most column replaced with all 1's. If −1 exists then

Explain: The original matrix equation is equivalent to a system of n×n linear equations in n×n variables. And there are n more linear equations from the fact that Q is a right stochastic matrix whose each row sums to 1. So it needs any n×n independent linear equations of the (n×n+n) equations to solve for the n×n variables. In this example, the n equations from “Q multiplied by the right-most column of (P-In)” have been replaced by the n stochastic ones.

One thing to notice is that if P has an element Pi,i on its main diagonal that is equal to 1 and the ith row or column is otherwise filled with 0's, then that row or column will remain unchanged in all of the subsequent powers Pk. Hence, the ith row or column of Q will have the 1 and the 0's in the same positions as in P.

Read more about this topic:  Markov Chain, Finite State Space

Famous quotes containing the words chain, finite, state and/or space:

    A chain is no stronger than its weakest link, and life is after all a chain.
    William James (1842–1910)

    For it is only the finite that has wrought and suffered; the infinite lies stretched in smiling repose.
    Ralph Waldo Emerson (1803–1882)

    Feminism, like Boston, is a state of mind. It is the state of mind of women who realize that their whole position in the social order is antiquated, as a woman cooking over an open fire with heavy iron pots would know that her entire housekeeping was out of date.
    Rheta Childe Dorr (1866–1948)

    The peculiarity of sculpture is that it creates a three-dimensional object in space. Painting may strive to give on a two-dimensional plane, the illusion of space, but it is space itself as a perceived quantity that becomes the peculiar concern of the sculptor. We may say that for the painter space is a luxury; for the sculptor it is a necessity.
    Sir Herbert Read (1893–1968)