Basic Counting Method
The estimated number of losing tricks (losers) in one's hand is determined by examining each suit and assuming that an ace will never be a loser, nor will a king in a 2+ card suit, nor a queen in a 3+ card suit; accordingly
- a void = 0 losing tricks.
- a singleton other than an A = 1 losing trick.
- a doubleton AK = 0; Ax or Kx = 1; xx = 2 losing tricks.
- a three card suit AKQ = 0; AKx, AQx or KQx = 1 losing trick.
- a three card suit Axx, Kxx or Qxx = 2; xxx = 3 losing tricks.
(Some authorities treat Qxx as 3 losers unless the Q is "balanced" by an A in another suit.) LTC also assumes that no suit can have more than 3 losing tricks and so suits longer than three cards are judged according to their three highest cards. It follows that hands without an A, K or Q have a maximum of 12 losers but may have fewer depending on shape, e.g. ♠ J x x x ♥ J x x ♦ J x x ♣ J x x has 12 losers (3 in each suit), whereas ♠ x x x x x ♥ — ♦ x x x x ♣ x x x x has only 9 losers (3 in all suits except the void which counts no losers).
Until further information is derived from the bidding, assume that a typical opening hand by partner contains 7 losers, e.g. ♠ A K x x x ♥ A x x x ♦ Q x ♣ x x, has 7 losers (1 + 2 + 2 + 2 = 7).
Read more about this topic: Losing-Trick Count
Famous quotes containing the words basic, counting and/or method:
“The man who is admired for the ingenuity of his larceny is almost always rediscovering some earlier form of fraud. The basic forms are all known, have all been practicised. The manners of capitalism improve. The morals may not.”
—John Kenneth Galbraith (b. 1908)
“What we commonly call man, the eating, drinking, planting, counting man, does not, as we know him, represent himself, but misrepresents himself. Him we do not respect, but the soul, whose organ he is, would he let it appear through his action, would make our knees bend.”
—Ralph Waldo Emerson (18031882)
“As a science of the unconscious it is a therapeutic method, in the grand style, a method overarching the individual case. Call this, if you choose, a poets utopia.”
—Thomas Mann (18751955)