Limit Superior And Limit Inferior
In mathematics, the limit inferior (also called infimum limit, liminf, inferior limit, lower limit, or inner limit) and limit superior (also called supremum limit, limsup, superior limit, upper limit, or outer limit) of a sequence can be thought of as limiting (i.e., eventual and extreme) bounds on the sequence. The limit inferior and limit superior of a function can be thought of in a similar fashion (see limit of a function). The limit inferior and limit superior of a set are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant.
Read more about Limit Superior And Limit Inferior: Definition For Sequences, The Case of Sequences of Real Numbers, Real-valued Functions, Functions From Metric Spaces To Metric Spaces, Sequences of Sets, Generalized Definitions
Famous quotes containing the words limit, superior and/or inferior:
“Washington has seldom seen so numerous, so industrious or so insidious a lobby. There is every evidence that money without limit is being spent to sustain this lobby.... I know that in this I am speaking for the members of the two houses, who would rejoice as much as I would to be released from this unbearable situation.”
—Woodrow Wilson (18561924)
“The traveler to the United States will do well ... to prepare himself for the class-consciousness of the natives. This differs from the already familiar English version in being more extreme and based more firmly on the conviction that the class to which the speaker belongs is inherently superior to all others.”
—John Kenneth Galbraith (b. 1908)
“Technique is the test of sincerity. If a thing isnt worth getting the technique to say, it is of inferior value.”
—Ezra Pound (18851972)