Real-valued Functions
Assume that a function is defined from a subset of the real numbers to the real numbers. As in the case for sequences, the limit inferior and limit superior are always well-defined if we allow the values +∞ and -∞; in fact, if both agree then the limit exists and is equal to their common value (again possibly including the infinities). For example, given f(x) = sin(1/x), we have lim supx→0 f(x) = 1 and lim infx→0 f(x) = -1. The difference between the two is a rough measure of how "wildly" the function oscillates, and in observation of this fact, it is called the oscillation of f at a. This idea of oscillation is sufficient to, for example, characterize Riemann-integrable functions as continuous except on a set of measure zero . Note that points of nonzero oscillation (i.e., points at which f is "badly behaved") are discontinuities which, unless they make up a set of zero, are confined to a negligible set.
Read more about this topic: Limit Superior And Limit Inferior
Famous quotes containing the word functions:
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)