Functions From Metric Spaces To Metric Spaces
There is a notion of lim sup and lim inf for functions defined on a metric space whose relationship to limits of real-valued functions mirrors that of the relation between the lim sup, lim inf, and the limit of a real sequence. Take metric spaces X and Y, a subspace E contained in X, and a function f : E → Y. The space Y should also be an ordered set, so that the notions of supremum and infimum make sense. Define, for any limit point a of E,
and
where B(a;ε) denotes the metric ball of radius ε about a.
Note that as ε shrinks, the supremum of the function over the ball is monotone decreasing, so we have
and similarly
This finally motivates the definitions for general topological spaces. Take X, Y, E and a as before, but now let X and Y both be topological spaces. In this case, we replace metric balls with neighborhoods:
(there is a way to write the formula using a lim using nets and the neighborhood filter). This version is often useful in discussions of semi-continuity which crop up in analysis quite often. An interesting note is that this version subsumes the sequential version by considering sequences as functions from the natural numbers as a topological subspace of the extended real line, into the space (the closure of N in is N ∪ {∞}.)
Read more about this topic: Limit Superior And Limit Inferior
Famous quotes containing the words functions and/or spaces:
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)
“Every true man is a cause, a country, and an age; requires infinite spaces and numbers and time fully to accomplish his design;and posterity seem to follow his steps as a train of clients.”
—Ralph Waldo Emerson (18031882)