In the mathematical field of differential topology, the Lie bracket of vector fields, Jacobi–Lie bracket, or commutator of vector fields is a bilinear differential operator which assigns, to any two vector fields X and Y on a smooth manifold M, a third vector field denoted . It is the specialization of the Lie derivative to the case of Lie differentiation of a vector field. Indeed, equals the Lie derivative .
It plays an important role in differential geometry and differential topology, and is also fundamental in the geometric theory for nonlinear control systems (Isaiah 2009, pp. 20–21, nonholonomic systems; Khalil 2002, pp. 523–530, feedback linearization).
A generalization of the Lie bracket (to vector-valued differential forms) is the Frölicher–Nijenhuis bracket.
Read more about Lie Bracket Of Vector Fields: Definition, Properties, Examples, Applications
Famous quotes containing the words lie and/or fields:
“In the middle of the night, as indeed each time that we lay on the shore of a lake, we heard the voice of the loon, loud and distinct, from far over the lake. It is a very wild sound, quite in keeping with the place and the circumstances of the traveler, and very unlike the voice of a bird. I could lie awake for hours listening to it, it is so thrilling.”
—Henry David Thoreau (18171862)
“If my friends could see me now!”
—Dorothy Fields (19041974)