Parallel Transport
In general, parallel transport along a curve with respect to a connection defines isomorphisms between the tangent spaces at the points of the curve. If the connection is a Levi-Civita connection, then these isomorphisms are orthogonal – that is, they preserve the inner products on the various tangent spaces.
Read more about this topic: Levi-Civita Connection
Famous quotes containing the words parallel and/or transport:
“One writes of scars healed, a loose parallel to the pathology of the skin, but there is no such thing in the life of an individual. There are open wounds, shrunk sometimes to the size of a pin-prick but wounds still. The marks of suffering are more comparable to the loss of a finger, or the sight of an eye. We may not miss them, either, for one minute in a year, but if we should there is nothing to be done about it.”
—F. Scott Fitzgerald (18961940)
“One may disavow and disclaim vices that surprise us, and whereto our passions transport us; but those which by long habits are rooted in a strong and ... powerful will are not subject to contradiction. Repentance is but a denying of our will, and an opposition of our fantasies.”
—Michel de Montaigne (15331592)