Levi-Civita Connection

In Riemannian geometry, the Levi-Civita connection is a specific connection on the tangent bundle of a manifold. More specifically, it is the torsion-free metric connection, i.e., the torsion-free connection on the tangent bundle (an affine connection) preserving a given (pseudo-)Riemannian metric.

The fundamental theorem of Riemannian geometry states that there is a unique connection which satisfies these properties.

In the theory of Riemannian and pseudo-Riemannian manifolds the term covariant derivative is often used for the Levi-Civita connection. The components of this connection with respect to a system of local coordinates are called Christoffel symbols.

The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel. Levi-Civita, along with Gregorio Ricci-Curbastro, used Christoffel's symbols to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

The Levi-Civita notions of intrinsic derivative and parallel displacement of a vector along a curve make sense on an abstract Riemannian manifold, even though the original motivation relied on a specific embedding, since the definition of the Christoffel symbols make sense in any Riemannian manifold. In 1869, Christoffel discovered that the components of the intrinsic derivative of a vector transform as the components of a contravariant vector. This discovery was the real beginning of tensor analysis. It was not until 1917 that Levi-Civita interpreted the intrinsic derivative in the case of an embedded surface as the tangential component of the usual derivative in the ambient affine space.

Read more about Levi-Civita Connection:  Formal Definition, Christoffel Symbols, Derivative Along Curve, Parallel Transport, Example: The Unit Sphere in ℝ3

Famous quotes containing the word connection:

    It may comfort you to know that if your child reaches the age of eleven or twelve and you have a good bond or relationship, no matter how dramatic adolescence becomes, you children will probably turn out all right and want some form of connection to you in adulthood.
    Charlotte Davis Kasl (20th century)