In mathematics, a level set of a real-valued function f of n variables is a set of the form
that is, a set where the function takes on a given constant value c.
When the number of variables is two, a level set is generically a curve, called a level curve, contour line, or isoline. When n = 3, a level set is called a level surface (see also isosurface), and for higher values of n the level set is a level hypersurface.
A set of the form
is called a sublevel set of f (or, alternatively, a lower level set or trench of f).
is called a superlevel set of f.
A level set is a special case of a fiber.
Read more about Level Set: Properties
Famous quotes containing the words level and/or set:
“We never exchange more than three words with a Friend in our lives on that level to which our thoughts and feelings almost habitually rise.”
—Henry David Thoreau (18171862)
“Old people love to give good advice to console themselves for no longer being able to set a bad example.”
—François, Duc De La Rochefoucauld (16131680)