Definition By Braid Representation
Jones' original formulation of his polynomial came from his study of operator algebras. In Jones' approach, it resulted from a kind of "trace" of a particular braid representation into an algebra which originally arose while studying certain models, e.g. the Potts model, in statistical mechanics.
Let a link L be given. A theorem of Alexander's states that it is the trace closure of a braid, say with n strands. Now define a representation of the braid group on n strands, Bn, into the Temperley–Lieb algebra TLn with coefficients in and . The standard braid generator is sent to, where are the standard generators of the Temperley–Lieb algebra. It can be checked easily that this defines a representation.
Take the braid word obtained previously from L and compute where tr is the Markov trace. This gives, where is the bracket polynomial. This can be seen by considering, as Kauffman did, the Temperley–Lieb algebra as a particular diagram algebra.
An advantage of this approach is that one can pick similar representations into other algebras, such as the R-matrix representations, leading to "generalized Jones invariants".
Read more about this topic: Jones Polynomial
Famous quotes containing the words definition and/or braid:
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“As a father I had some trouble finding the words to separate the person from the deed. Usually, when one of my sons broke the rules or a window, I was too angry to speak calmly and objectively. My own solution was to express my feelings, but in an exaggerated, humorous way: You do that again and you will be grounded so long they will call you Rip Van Winkle II, or If I hear that word again, Im going to braid your tongue.”
—David Elkind (20th century)