Definition
A locally finite poset is one for which every closed interval
- = {x : a ≤ x ≤ b}
within it is finite.
The members of the incidence algebra are the functions f assigning to each nonempty interval a scalar f(a, b), which is taken from the ring of scalars, a commutative ring with unity. On this underlying set one defines addition and scalar multiplication pointwise, and "multiplication" in the incidence algebra is a convolution defined by
An incidence algebra is finite-dimensional if and only if the underlying poset is finite.
Read more about this topic: Incidence Algebra
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)