Comparison To Classical Dimension
If Z is a subset of 2ω, its Hausdorff dimension is .
The packing dimension of Z is .
Thus the effective Hausdorff and packing dimensions of a set are simply the classical Hausdorff and packing dimensions of (respectively) when we restrict our attention to c.e. gales.
Define the following:
A consequence of the above is that these all have Hausdorff dimension .
and all have packing dimension 1.
and all have packing dimension .
Read more about this topic: Effective Dimension
Famous quotes containing the words comparison to, comparison, classical and/or dimension:
“It is very important not to become hard. The artist must always have one skin too few in comparison to other people, so you feel the slightest wind.”
—Shusha Guppy (b. 1938)
“Most parents arent even aware of how often they compare their children. . . . Comparisons carry the suggestion that specific conditions exist for parental love and acceptance. Thus, even when one child comes out on top in a comparison she is left feeling uneasy about the tenuousness of her position and the possibility of faring less well in the next comparison.”
—Marianne E. Neifert (20th century)
“The basic difference between classical music and jazz is that in the former the music is always greater than its performanceBeethovens Violin Concerto, for instance, is always greater than its performancewhereas the way jazz is performed is always more important than what is being performed.”
—André Previn (b. 1929)
“God cannot be seen: he is too bright for sight; nor grasped: he is too pure for touch; nor measured: for he is beyond all sense, infinite, measureless, his dimension known to himself alone.”
—Marcus Minucius Felix (2nd or 3rd cen. A.D.)