Dirichlet Eta Function - Numerical Algorithms

Numerical Algorithms

Most of the series acceleration techniques developed for alternating series can be profitably applied to the evaluation of the eta function. One particularly simple, yet reasonable method is to apply Euler's transformation of alternating series, to obtain

\eta(s)=\sum_{n=0}^\infty \frac{1}{2^{n+1}}
\sum_{k=0}^n (-1)^{k} {n \choose k} \frac {1}{(k+1)^s}.

Note that the second, inside summation is a forward difference.

Read more about this topic:  Dirichlet Eta Function

Famous quotes containing the word numerical:

    There is a genius of a nation, which is not to be found in the numerical citizens, but which characterizes the society.
    Ralph Waldo Emerson (1803–1882)