Connected Sum Along A Submanifold
Let and be two smooth, oriented manifolds of equal dimension and a smooth, closed, oriented manifold, embedded as a submanifold into both and . Suppose furthermore that there exists an isomorphism of normal bundles
that reverses the orientation on each fiber. Then induces an orientation-preserving diffeomorphism
where each normal bundle is diffeomorphically identified with a neighborhood of in, and the map
is the orientation-reversing diffeomorphic involution
on normal vectors. The connected sum of and along is then the space
obtained by gluing the deleted neighborhoods together by the orientation-preserving diffeomorphism. The sum is often denoted
Its diffeomorphism type depends on the choice of the two embeddings of and on the choice of .
Loosely speaking, each normal fiber of the submanifold contains a single point of, and the connected sum along is simply the connected sum as described in the preceding section, performed along each fiber. For this reason, the connected sum along is often called the fiber sum.
The special case of a point recovers the connected sum of the preceding section.
Read more about this topic: Connected Sum
Famous quotes containing the words connected and/or sum:
“When, in the course of human events, it becomes necessary for one people to dissolve the political bands which have connected them with another, and to assume the powers of the earth, the separate and equal station to which the laws of nature and of natures God entitle them, a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation.”
—Thomas Jefferson (17431826)
“[M]y conception of liberty does not permit an individual citizen or a group of citizens to commit acts of depredation against nature in such a way as to harm their neighbors and especially to harm the future generations of Americans. If many years ago we had had the necessary knowledge, and especially the necessary willingness on the part of the Federal Government, we would have saved a sum, a sum of money which has cost the taxpayers of America two billion dollars.”
—Franklin D. Roosevelt (18821945)