The Arithmetical Hierarchy of Sets of Natural Numbers
A set X of natural numbers is defined by formula φ in the language of Peano arithmetic if the elements of X are exactly the numbers that satisfy φ. That is, for all natural numbers n,
where is the numeral in the language of arithmetic corresponding to . A set is definable in first order arithmetic if it is defined by some formula in the language of Peano arithmetic.
Each set X of natural numbers that is definable in first order arithmetic is assigned classifications of the form, and, where is a natural number, as follows. If X is definable by a formula then X is assigned the classification . If X is definable by a formula then X is assigned the classification . If X is both and then is assigned the additional classification .
Note that it rarely makes sense to speak of formulas; the first quantifier of a formula is either existential or universal. So a set is not defined by a formula; rather, there are both and formulas that define the set.
A parallel definition is used to define the arithmetical hierarchy on finite Cartesian powers of the natural numbers. Instead of formulas with one free variable, formulas with k free number variables are used to define the arithmetical hierarchy on sets of k-tuples of natural numbers.
Read more about this topic: Arithmetical Hierarchy
Famous quotes containing the words hierarchy, sets, natural and/or numbers:
“In a hierarchy every employee tends to rise to his level of incompetence.”
—Laurence J. Peter (19191990)
“There is a small steam engine in his brain which not only sets the cerebral mass in motion, but keeps the owner in hot water.”
—Unknown. New York Weekly Mirror (July 5, 1845)
“The urgent consideration of the public safety may undoubtedly authorise the violation of every positive law. How far that or any other consideration may operate to dissolve the natural obligations of humanity and justice, is a doctrine of which I still desire to remain ignorant.”
—Edward Gibbon (17371794)
“I had a feeling that out there, there were very poor people who didnt have enough to eat. But they wore wonderfully colored rags and did musical numbers up and down the streets together.”
—Jill Robinson (b. 1936)