The Arithmetical Hierarchy of Sets of Natural Numbers
A set X of natural numbers is defined by formula φ in the language of Peano arithmetic if the elements of X are exactly the numbers that satisfy φ. That is, for all natural numbers n,
where is the numeral in the language of arithmetic corresponding to . A set is definable in first order arithmetic if it is defined by some formula in the language of Peano arithmetic.
Each set X of natural numbers that is definable in first order arithmetic is assigned classifications of the form, and, where is a natural number, as follows. If X is definable by a formula then X is assigned the classification . If X is definable by a formula then X is assigned the classification . If X is both and then is assigned the additional classification .
Note that it rarely makes sense to speak of formulas; the first quantifier of a formula is either existential or universal. So a set is not defined by a formula; rather, there are both and formulas that define the set.
A parallel definition is used to define the arithmetical hierarchy on finite Cartesian powers of the natural numbers. Instead of formulas with one free variable, formulas with k free number variables are used to define the arithmetical hierarchy on sets of k-tuples of natural numbers.
Read more about this topic: Arithmetical Hierarchy
Famous quotes containing the words hierarchy, sets, natural and/or numbers:
“In the world of the celebrity, the hierarchy of publicity has replaced the hierarchy of descent and even of great wealth.”
—C. Wright Mills (19161962)
“It is mediocrity which makes laws and sets mantraps and spring-guns in the realm of free song, saying thus far shalt thou go and no further.”
—James Russell Lowell (181991)
“Ive always been impressed by the different paths babies take in their physical development on the way to walking. Its rare to see a behavior that starts out with such wide natural variation, yet becomes so uniform after only a few months.”
—Lawrence Kutner (20th century)
“Our religion vulgarly stands on numbers of believers. Whenever the appeal is madeno matter how indirectlyto numbers, proclamation is then and there made, that religion is not. He that finds God a sweet, enveloping presence, who shall dare to come in?”
—Ralph Waldo Emerson (18031882)