Extensions To Classical Field Theory
- Lagrangian field theory
Replacing the generalized coordinates by scalar fields φ(r, t), and introducing the Lagrangian density (Lagrangian per unit volume), in which the Lagrangian is the volume integral of it:
where ∂μ denotes the 4-gradient, the Euler-Lagrange equations can be extended to classical fields (such as Newtonian gravity and classical electromagnetism):
where the summation convention has been used. This formulation is an important basis for quantum field theory - by replacing wavefunctions with scalar fields.
- Hamiltonian field theory
The corresponding momentum field density conjugate to the field φ(r, t) is:
The Hamiltonian density (Hamiltonian per unit volume) is likewise;
and satisfies analogously:
Read more about this topic: Analytical Mechanics
Famous quotes containing the words extensions, classical, field and/or theory:
“The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we dont like what we see, we feel angry at the reflection.”
—Elaine Heffner (20th century)
“Et in Arcadia ego.
[I too am in Arcadia.]”
—Anonymous, Anonymous.
Tomb inscription, appearing in classical paintings by Guercino and Poussin, among others. The words probably mean that even the most ideal earthly lives are mortal. Arcadia, a mountainous region in the central Peloponnese, Greece, was the rustic abode of Pan, depicted in literature and art as a land of innocence and ease, and was the title of Sir Philip Sidneys pastoral romance (1590)
“I dont like comparisons with football. Baseball is an entirely different game. You can watch a tight, well-played football game, but it isnt exciting if half the stadium is empty. The violence on the field must bounce off a lot of people. But you can go to a ball park on a quiet Tuesday afternoon with only a few thousand people in the place and thoroughly enjoy a one-sided game. Baseball has an aesthetic, intellectual appeal found in no other team sport.”
—Bowie Kuhn (b. 1926)
“There could be no fairer destiny for any physical theory than that it should point the way to a more comprehensive theory in which it lives on as a limiting case.”
—Albert Einstein (18791955)