Definition
Let K be a knot in the 3-sphere. Let X be the infinite cyclic cover of the knot complement of K. This covering can be obtained by cutting the knot complement along a Seifert surface of K and gluing together infinitely many copies of the resulting manifold with boundary in a cyclic manner. There is a covering transformation t acting on X. Consider the first homology (with integer coefficients) of X, denoted . The transformation t acts on the homology and so we can consider a module over . This is called the Alexander invariant or Alexander module.
The module is finitely presentable; a presentation matrix for this module is called the Alexander matrix. If the number of generators, r, is less than or equal to the number of relations, s, then we consider the ideal generated by all r by r minors of the matrix; this is the zero'th Fitting ideal or Alexander ideal and does not depend on choice of presentation matrix. If r > s, set the ideal equal to 0. If the Alexander ideal is principal, take a generator; this is called an Alexander polynomial of the knot. Since this is only unique up to multiplication by the Laurent monomial, one often fixes a particular unique form. Alexander's choice of normalization is to make the polynomial have a positive constant term.
Alexander proved that the Alexander ideal is nonzero and always principal. Thus an Alexander polynomial always exists, and is clearly a knot invariant, denoted .
Read more about this topic: Alexander Polynomial
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)