Zeta Function Universality

Zeta Function Universality

In mathematics, the universality of zeta-functions is the remarkable ability of the Riemann zeta-function and other, similar, functions, such as the Dirichlet L-functions, to approximate arbitrary non-vanishing holomorphic functions arbitrarily well.

The universality of the Riemann zeta function was first proven by Sergei Mikhailovitch Voronin in 1975 and is sometimes known as Voronin's Universality Theorem.

Read more about Zeta Function Universality:  Formal Statement, Discussion, Universality of Other Zeta Functions

Famous quotes containing the word function:

    Of all the inhabitants of the inferno, none but Lucifer knows that hell is hell, and the secret function of purgatory is to make of heaven an effective reality.
    Arnold Bennett (1867–1931)