Zero-product Property - Application To Finding Roots of Polynomials

Application To Finding Roots of Polynomials

Suppose and are univariate polynomials with real coefficients, and is a real number such that . (Actually, we may allow the coefficients and to come from any integral domain.) By the zero-product property, it follows that either or . In other words, the roots of are precisely the roots of together with the roots of .

Thus, one can use factorization to find the roots of a polynomial. For example, the polynomial factorizes as ; hence, its roots are precisely 3, 1, and -2.

In general, suppose is an integral domain and is a monic univariate polynomial of degree with coefficients in . Suppose also that has distinct roots . It follows (but we do not prove here) that factorizes as . By the zero-product property, it follows that are the only roots of : any root of must be a root of for some . In particular, has at most distinct roots.

If however is not an integral domain, then the conclusion need not hold. For example, the cubic polynomial has six roots in (though it has only three roots in ).

Read more about this topic:  Zero-product Property

Famous quotes containing the words application to, application, finding and/or roots:

    It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.
    René Descartes (1596–1650)

    By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bête noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!
    Albert Einstein (1879–1955)

    Primitive peoples tried to annul death by portraying the human body—we do it by finding substitutes for the human body. Technology instead of mysticism!
    Max Frisch (1911–1991)

    April is the cruellest month, breeding
    Lilacs out of the dead land, mixing
    Memory and desire, stirring
    Dull roots with spring rain.
    —T.S. (Thomas Stearns)