In the branch of mathematics called algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, it is the following assertion:
If, then either or .
The zero-product property is also known as the rule of zero product or nonexistence of zero divisors. All of the number systems studied in elementary mathematics — the integers, the rational numbers, the real numbers, and the complex numbers — satisfy the zero-product property. In general, a ring which satisfies the zero-product property is called a domain.
Read more about Zero-product Property: Algebraic Context, Examples, Non-examples, Application To Finding Roots of Polynomials
Famous quotes containing the word property:
“For wisdom is the property of the dead,
A something incompatible with life; and power,
Like everything that has the stain of blood,
A property of the living; but no stain
Can come upon the visage of the moon
When it has looked in glory from a cloud.”
—William Butler Yeats (18651939)