Zech's Logarithms - Examples

Examples

Let α ∈ GF(23) be a root of the primitive polynomial x3 + x2 + 1. The traditional representation of elements of this field is as polynomials in α of degree 2 or less.

A table of Zech logarithms for this field are Z(-∞)=0, Z(0)=-∞, Z(1)=5, Z(2)=3, Z(3)=2, Z(4)=6, Z(5)=1, and Z(6)=4. The multiplicative order of α is 7, so the exponential representation works with integers modulo 7.

Since α is a root of x3 + x2 + 1 then that means α3 + α2 + 1 = 0, or if we recall that since all coefficients are in GF(2), subtraction is the same as addition, we obtain α3 = α2 + 1.

The conversion from exponential to polynomial representations is given by


\alpha^3 = \alpha^2 + 1 (as shown above)

\alpha^4 = \alpha^3 \alpha = (\alpha^2 + 1)\alpha = \alpha^3 + \alpha = \alpha^2 + \alpha + 1

\alpha^5 = \alpha^4 \alpha = (\alpha^2 + \alpha + 1)\alpha = \alpha^3 + \alpha^2 + \alpha = \alpha^2 + 1 + \alpha^2 + \alpha = \alpha + 1

\alpha^6 = \alpha^5 \alpha = (\alpha + 1)\alpha = \alpha^2 + \alpha

Using Zech logarithms to compute α6 + α3:

and verifying it in the polynomial representation:

Read more about this topic:  Zech's Logarithms

Famous quotes containing the word examples:

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)