Examples
Let α ∈ GF(23) be a root of the primitive polynomial x3 + x2 + 1. The traditional representation of elements of this field is as polynomials in α of degree 2 or less.
A table of Zech logarithms for this field are Z(-∞)=0, Z(0)=-∞, Z(1)=5, Z(2)=3, Z(3)=2, Z(4)=6, Z(5)=1, and Z(6)=4. The multiplicative order of α is 7, so the exponential representation works with integers modulo 7.
Since α is a root of x3 + x2 + 1 then that means α3 + α2 + 1 = 0, or if we recall that since all coefficients are in GF(2), subtraction is the same as addition, we obtain α3 = α2 + 1.
The conversion from exponential to polynomial representations is given by
(as shown above)
Using Zech logarithms to compute α6 + α3:
and verifying it in the polynomial representation:
Read more about this topic: Zech's Logarithms
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)