Definition
If is a primitive element of a finite field, then the Zech logarithm relative to the base is defined by the equation
or equivalently by
The choice of base is usually dropped from the notation when it's clear from context.
To be more precise, is a function on the integers modulo the multiplicative order of, and takes values in the same set. In order to describe every element, it is convenient to formally add a new symbol, along with the definitions
where is an integer satisfying .
Using the Zech logarithm, finite field arithmetic can be done in the exponential representation:
These formulas remain true with our conventions with the symbol, with the caveat that subtraction by is undefined. In particular, the addition and subtraction formulas need to treat as a special case.
This can be extended to arithmetic of the projective line by introducing another symbol satisfying and other rules as appropriate.
Read more about this topic: Zech's Logarithms
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)