Zarankiewicz Problem - Definition

Definition

Let Ka,b denote a complete bipartite graph with a vertices on one side of the bipartition and b vertices on the other side. Define Za,b(m,n) to be the smallest integer k such that every bipartite graph that has m vertices on one side of its bipartition, n vertices on the other side, and k edges contains a subgraph isomorphic to Ka,b.

An alternative and equivalent definition is that Za,b(m,n) is the smallest integer k such that every (0,1)-matrix of size m × n with k 1's must have a set of a rows and b columns such that the corresponding a×b submatrix is made up only of 1's.

For the specific case when m = n and a = b the shorter notation Za(n) = Za,b(m,n) may also be used.

Read more about this topic:  Zarankiewicz Problem

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)