Definition
Let Ka,b denote a complete bipartite graph with a vertices on one side of the bipartition and b vertices on the other side. Define Za,b(m,n) to be the smallest integer k such that every bipartite graph that has m vertices on one side of its bipartition, n vertices on the other side, and k edges contains a subgraph isomorphic to Ka,b.
An alternative and equivalent definition is that Za,b(m,n) is the smallest integer k such that every (0,1)-matrix of size m × n with k 1's must have a set of a rows and b columns such that the corresponding a×b submatrix is made up only of 1's.
For the specific case when m = n and a = b the shorter notation Za(n) = Za,b(m,n) may also be used.
Read more about this topic: Zarankiewicz Problem
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)