Word Problem For Groups - Partial Solution of The Word Problem

Partial Solution of The Word Problem

The word problem for a recursively presented group can be partially solved in the following sense:

Given a recursive presentation P = ⟨X|R⟩ for a group G, define:
then there is a partial recursive function fP such that:
f_P(\langle u,v \rangle) =
\left\{\begin{matrix}
0 &\mbox{if}\ \langle u,v \rangle \in S \\
\mbox{undefined/does not halt}\ &\mbox{if}\ \langle u,v \rangle \notin S
\end{matrix}\right.

More informally, there is an algorithm that halts if u=v, but does not do so otherwise.

It follows that to solve the word problem for P it is sufficient to construct a recursive function g such that:

g(\langle u,v \rangle) =
\left\{\begin{matrix}
0 &\mbox{if}\ \langle u,v \rangle \notin S \\
\mbox{undefined/does not halt}\ &\mbox{if}\ \langle u,v \rangle \in S
\end{matrix}\right.

However u=v in G if and only if uv−1=1 in G. It follows that to solve the word problem for P it is sufficient to construct a recursive function h such that:

h(x) =
\left\{\begin{matrix}
0 &\mbox{if}\ x\neq1\ \mbox{in}\ G \\
\mbox{undefined/does not halt}\ &\mbox{if}\ x=1\ \mbox{in}\ G
\end{matrix}\right.

Read more about this topic:  Word Problem For Groups

Famous quotes containing the words partial, solution, word and/or problem:

    We were soon in the smooth water of the Quakish Lake,... and we had our first, but a partial view of Ktaadn, its summit veiled in clouds, like a dark isthmus in that quarter, connecting the heavens with the earth.
    Henry David Thoreau (1817–1862)

    Who shall forbid a wise skepticism, seeing that there is no practical question on which any thing more than an approximate solution can be had? Is not marriage an open question, when it is alleged, from the beginning of the world, that such as are in the institution wish to get out, and such as are out wish to get in?
    Ralph Waldo Emerson (1803–1882)

    Sir, money, money, the most charming of all things; money, which will say more in one moment than the most elegant lover can in years. Perhaps you will say a man is not young; I answer he is rich. He is not genteel, handsome, witty, brave, good-humoured, but he is rich, rich, rich, rich, rich—that one word contradicts everything you can say against him.
    Henry Fielding (1707–1754)

    The disesteem into which moralists have fallen is due at bottom to their failure to see that in an age like this one the function of the moralist is not to exhort men to be good but to elucidate what the good is. The problem of sanctions is secondary.
    Walter Lippmann (1889–1974)