Wishart Distribution - Probability Density Function

Probability Density Function

The Wishart distribution can be characterized by its probability density function, as follows.

Let be a p × p symmetric matrix of random variables that is positive definite. Let V be a (fixed) positive definite matrix of size p × p.

Then, if np, has a Wishart distribution with n degrees of freedom if it has a probability density function given by

where Γp(·) is the multivariate gamma function defined as


\Gamma_p(n/2)=
\pi^{p(p-1)/4}\Pi_{j=1}^p
\Gamma\left.

In fact the above definition can be extended to any real n > p − 1. If np − 2, then the Wishart no longer has a density—instead it represents a singular distribution.

Read more about this topic:  Wishart Distribution

Famous quotes containing the words probability and/or function:

    Only in Britain could it be thought a defect to be “too clever by half.” The probability is that too many people are too stupid by three-quarters.
    John Major (b. 1943)

    The function of muscle is to pull and not to push, except in the case of the genitals and the tongue.
    Leonardo Da Vinci (1425–1519)