Statement of The Weil Conjectures
Suppose that X is a non-singular n-dimensional projective algebraic variety over the field Fq with q elements. The zeta function ζ(X, s) of X is by definition
where Nm is the number of points of X defined over the degree m extension Fqm of Fq.
The Weil conjectures state:
- (Rationality) ζ(X, s) is a rational function of T = q−s. More precisely, ζ(X, s) can be written as a finite alternating product
- (Functional equation and Poincaré duality) The zeta function satisfies
- (Riemann hypothesis) |αi,j| = qi/2 for all 1 ≤ i ≤ 2n − 1 and all j. This implies that all zeros of Pk(T) lie on the "critical line" of complex numbers s with real part k/2.
- (Betti numbers) If X is a (good) "reduction mod p" of a non-singular projective variety Y defined over a number field embedded in the field of complex numbers, then the degree of Pi is the ith Betti number of the space of complex points of Y.
Read more about this topic: Weil Conjectures
Famous quotes containing the words statement of, statement, weil and/or conjectures:
“Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.”
—Ralph Waldo Emerson (18031882)
“A sentence is made up of words, a statement is made in words.... Statements are made, words or sentences are used.”
—J.L. (John Langshaw)
“To set up as a standard of public morality a notion which can neither be defined nor conceived is to open the door to every kind of tyranny.”
—Simone Weil (19091943)
“After all, it is putting a very high price on ones conjectures to have a man roasted alive because of them.”
—Michel de Montaigne (15331592)