Weil Conjectures - Statement of The Weil Conjectures

Statement of The Weil Conjectures

Suppose that X is a non-singular n-dimensional projective algebraic variety over the field Fq with q elements. The zeta function ζ(X, s) of X is by definition

where Nm is the number of points of X defined over the degree m extension Fqm of Fq.

The Weil conjectures state:

  1. (Rationality) ζ(X, s) is a rational function of T = q−s. More precisely, ζ(X, s) can be written as a finite alternating product
    where each Pi(T) is an integral polynomial. Furthermore, P0(T) = 1 − T, P2n(T) = 1 − qnT, and for 1 ≤ i ≤ 2n − 1, Pi(T) factors over C as for some numbers αij.
  2. (Functional equation and Poincaré duality) The zeta function satisfies
    or equivalently
    where E is the Euler characteristic of X. In particular, for each i, the numbers α2n-i,1, α2n-i,2, … equal the numbers qni,1, qni,2, … in some order.
  3. (Riemann hypothesis) |αi,j| = qi/2 for all 1 ≤ i ≤ 2n − 1 and all j. This implies that all zeros of Pk(T) lie on the "critical line" of complex numbers s with real part k/2.
  4. (Betti numbers) If X is a (good) "reduction mod p" of a non-singular projective variety Y defined over a number field embedded in the field of complex numbers, then the degree of Pi is the ith Betti number of the space of complex points of Y.

Read more about this topic:  Weil Conjectures

Famous quotes containing the words statement of the, statement of, statement, weil and/or conjectures:

    It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.
    John Dewey (1859–1952)

    It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.
    John Dewey (1859–1952)

    The new statement is always hated by the old, and, to those dwelling in the old, comes like an abyss of skepticism.
    Ralph Waldo Emerson (1803–1882)

    I suffer more from the humiliations inflicted by my country than from those inflicted on her.
    —Simone Weil (1909–1943)

    After all, it is putting a very high price on one’s conjectures to have a man roasted alive because of them.
    Michel de Montaigne (1533–1592)