Vividness of Visual Imagery Questionnaire (VVIQ) - FMRI Studies

FMRI Studies

Recent studies have found that individual differences in VVIQ scores can be used to predict changes in a person's brain while visualizing different activities. For example, Amedi, Malach and Pascual-Leone (2005) predicted that VVIQ scores might be correlated with the degree of deactivation of the auditory cortex in individual subjects in functional magnetic resonance imaging (fMRI). These investigators found a significant positive correlation between the magnitude of A1 deactivation (negative blood-oxygen-level-dependent -BOLD- signal in auditory cortex) and the subjective vividness of visual imagery (Spearman r = 0.73, p < 0.05).

In looking for possible correlations across the entire brain, Amedi et al. ran a correlation analysis between the VVIQ and BOLD on a voxel-by-voxel exploratory basis. Significant negative correlations between VI BOLD and VVIQ were located in auditory or somatosensory cortex, including left HG, STG bilaterally, and right STS. Positive correlations were found between VVIQ and BOLD signal in visual and inferior prefrontal cortex but also in parahippocampal areas bilaterally and left parieto-occipital sulcus. Amedi et al. (2005) concluded that "...pure visual imagery is characterized by an isolated activation of visual cortical areas with concurrent deactivation of sensory inputs that could potentially disrupt the image created by our mind’s eye" (p. 867).

Cui et al. (2007) used fMRI to study the association between early visual cortex activity relative to the whole brain while participants visualised themselves or another person bench pressing or stair climbing. The investigators found that reported image vividness correlates with the relative fMRI signal in visual corex. Thus individual differences in the vividness of visual imagery can be measured objectively. The subjective experience of forming a mental image and objective measurement of visual cortical activity show a strong and significant relationship.

Logie, Pernet, Buonocore and Della Sala (2011) used behavioural and fMRI data for mental rotation from individuals reporting vivid and poor imagery on the VVIQ. Groups differed in in brain activation patterns suggesting that the groups performed the same tasks in different ways. These findings help to explain the lack of association previously reported between VVIQ scores and mental rotation performance.

Lee, Kravitz and Baker (2012) used fMRI and multi-voxel pattern analysis to investigate the specificity, distribution, and similarity of information for individual seen and imagined objects. Participants either viewed or imagined individual named object images on which they had been trained prior to the scan. Lee et al. found that the identity of both seen and imagined objects could be decoded from the pattern of activity throughout the ventral visual processing stream. Further, there was enough correspondence between imagery and perception to allow discrimination of individual imagined objects based on the response during perception.

However, the distribution of object information across visual areas was strikingly different during imagery and perception. While there was an obvious posterior–anterior gradient along the ventral visual stream for seen objects, there was an opposite gradient for imagined objects. Correlation between fMRI and VVIQ scores showed that, in both object-selective and early visual cortex, Lee et al.'s (2012) measure of discrimination across imagery and perception correlated with the vividness of imagery. These results suggest that, while imagery and perception have similar neural substrates, they involve different network dynamics.

Read more about this topic:  Vividness Of Visual Imagery Questionnaire (VVIQ)

Famous quotes containing the word studies:

    Even if one studies to an old age, one will never finish learning.
    Chinese proverb.