Basic Properties
The three basic properties of viscosity solutions are existence, uniqueness and stability.
- The uniqueness of solutions requires some extra structural assumptions on the equation. Yet it can be shown for a very large class of degenerate elliptic equations. It is a direct consequence of the comparison principle. Some simple examples where comparison principle holds are
- with H uniformly continuous in x.
- (Uniformly elliptic case) so that is Lipschitz with respect to all variableas and for every and, for some .
- The existence of solutions holds in all cases where the comparison principle holds and the boundary conditions can be enforced in some way (through barrier functions in the case of a Dirichlet boundary condition). For first order equations, it can be obtained using the vanishing viscosity method or for most equations using Perron's method.
- The stability of solutions in holds as follows: a locally uniform limit of a sequence of solutions (or subsolutions, or supersolutions) is a solution (or subsolution, or supersolution).
Read more about this topic: Viscosity Solution
Famous quotes containing the words basic and/or properties:
“When you realize how hard it is to know the truth about yourself, you understand that even the most exhaustive and well-meaning autobiography, determined to tell the truth, represents, at best, a guess. There have been times in my life when I felt incredibly happy. Life was full. I seemed productive. Then I thought,Am I really happy or am I merely masking a deep depression with frantic activity? If I dont know such basic things about myself, who does?”
—Phyllis Rose (b. 1942)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)