In mathematics, the viscosity solution concept was introduced in the early 1980s by Pierre-Louis Lions and Michael Crandall as a generalization of the classical concept of what is meant by a 'solution' to a partial differential equation (PDE). It has been found that the viscosity solution is the natural solution concept to use in many applications of PDE's, including for example first order equations arising in optimal control (the Hamilton-Jacobi equation), differential games (the Isaacs equation) or front evolution problems, as well as second-order equations such as the ones arising in stochastic optimal control or stochastic differential games.
The classical concept was that a PDE
over a domain has a solution if we can find a function u(x) continuous and differentiable over the entire domain such that, satisfy the above equation at every point.
If a scalar equation is degenerate elliptic (defined below), one can define a type of weak solution called viscosity solution. Under the viscosity solution concept, u need not be everywhere differentiable. There may be points where either or does not exist and yet u satisfies the equation in an appropriate sense. The definition allows only for certain kind of singularities, so that existence, uniqueness, and stability under uniform limits, hold for a large class of equations.
Read more about Viscosity Solution: Definition, Basic Properties, History
Famous quotes containing the word solution:
“Give a scientist a problem and he will probably provide a solution; historians and sociologists, by contrast, can offer only opinions. Ask a dozen chemists the composition of an organic compound such as methane, and within a short time all twelve will have come up with the same solution of CH4. Ask, however, a dozen economists or sociologists to provide policies to reduce unemployment or the level of crime and twelve widely differing opinions are likely to be offered.”
—Derek Gjertsen, British scientist, author. Science and Philosophy: Past and Present, ch. 3, Penguin (1989)