Virtually Haken Conjecture

In topology, an area of mathematics, the virtually Haken conjecture states that every compact, orientable, irreducible three-dimensional manifold with infinite fundamental group is virtually Haken. That is, it has a finite cover (a covering space with a finite-to-one covering map) that is a Haken manifold.

After the proof of the geometrization conjecture by Perelman, the conjecture was only open for hyperbolic 3-manifolds.

The conjecture is usually attributed to Friedhelm Waldhausen in a paper from 1968, although he did not formally state it. This problem is formally stated as Problem 3.2 in Kirby's problem list.

A proof of the conjecture was announced on March 12, 2012 by Ian Agol in a seminar lecture he gave at the Institut Henri Poincaré. The proof was subsequently outlined in three lectures March 26 and 28th at the Workshop on Immersed Surfaces in 3-Manifolds at the Institut Henri Poincaré. A preprint of the claimed proof has been posted on the ArXiv. The proof built on results of Kahn and Markovic in their proof of the Surface subgroup conjecture and results of Wise in proving the Malnormal Special Quotient Theorem and results of Bergeron and Wise for the cubulation of groups.

Famous quotes containing the words virtually and/or conjecture:

    It may be tempting to focus on the fact that, even among those who support equality, men’s involvement as fathers remains a far distance from what most women want and most children need. Yet it is also important to acknowledge how far and how fast many men have moved towards a pattern that not long ago virtually all men considered anathema.
    Katherine Gerson (20th century)

    What these perplexities of my uncle Toby were,—’tis impossible for you to guess;Mif you could,—I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,—I would tear it out of my book.
    Laurence Sterne (1713–1768)