Virial Coefficient - Definition in Terms of Graphs

Definition in Terms of Graphs

The virial coeffcients are related to the irreducible Mayer cluster integrals through

The latter are concisely defined in terms of graphs.

The rule for turning these graphs into integrals is as follows:

  1. Take a graph and label its white vertex by and the remaining black vertices with .
  2. Associate a labelled coordinate k to each of the vertices, representing the continuous degrees of freedom associated with that particle. The coordinate 0 is reserved for the white vertex
  3. With each bond linking two vertices associate the Mayer f-function corresponding to the interparticle potential
  4. Integrate over all coordinates assigned to the black vertices
  5. Multiply the end result with the symmetry number of the graph, defined as the inverse of the number of permutations of the black labelled vertices that leave the graph topologically invariant.

The first two cluster integrals are

In particular we get

where particle 2 was assumed to define the origin . This classical expression for the second virial coefficient was first derived by L. S. Ornstein in his 1908 Leiden University Ph.D. thesis.

Read more about this topic:  Virial Coefficient

Famous quotes containing the words definition in, definition and/or terms:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    Certainly for us of the modern world, with its conflicting claims, its entangled interests, distracted by so many sorrows, so many preoccupations, so bewildering an experience, the problem of unity with ourselves in blitheness and repose, is far harder than it was for the Greek within the simple terms of antique life. Yet, not less than ever, the intellect demands completeness, centrality.
    Walter Pater (1839–1894)