Magnetic Focusing in Typical Camera Tubes
The phenomenon known as magnetic focusing was discovered by A. A. Campbell-Swinton in 1896, he found that a longitudinal magnetic field generated by an axial coil can focus an electron beam. This phenomenon was immediately corroborated by J. A. Fleming, and Hans Busch gave a complete mathematical interpretation in 1926.
Diagrams in this article show that the focus coil surrounds the camera tube; it is much longer than the focus coils for earlier TV CRTs. Camera-tube focus coils, by themselves, have essentially parallel lines of force, very different from the localized semi-toroidal magnetic field geometry inside a TV receiver CRT focus coil. The latter is essentially a magnetic lens; it focuses the "crossover" (between the CRT's cathode and G1 electrode, where the electrons pinch together and diverge again) onto the screen.
The electron optics of camera tubes differ considerably. Electrons inside these long focus coils take helical paths as they travel along the length of the tube. The center (think local axis) of one of those helices is like a line of force of the magnetic field. While the electrons are traveling, the helices essentially don't matter. Assuming that they start from a point, the electrons will focus to a point again at a distance determined by the strength of the field. Focusing a tube with this kind of coil is simply a matter of trimming the coil's current. In effect, the electrons travel along the lines of force, although helically, in detail.
These focus coils are essentially as long as the tubes themselves, and surround the deflection yoke (coils). Deflection fields bend the lines of force (with negligible defocusing), and the electrons follow the lines of force.
In a conventional magnetically deflected CRT, such as in a TV receiver or computer monitor, basically the vertical deflection coils are equivalent to coils wound around an horizontal axis. That axis is perpendicular to the neck of the tube; lines of force are basically horizontal. (In detail, coils in a deflection yoke extend some distance beyond the neck of the tube, and lie close to the flare of the bulb; they have a truly distinctive appearance.)
In a magnetically focused camera tube (there are electrostatically focused vidicons), the vertical deflection coils are above and below the tube, instead of being on both sides of it. One might say that this sort of deflection starts to create S-bends in the lines of force, but doesn't become anywhere near to that extreme.
Read more about this topic: Video Camera Tube
Famous quotes containing the words magnetic, typical and/or camera:
“We are in great haste to construct a magnetic telegraph from Maine to Texas; but Maine and Texas, it may be, have nothing important to communicate.”
—Henry David Thoreau (18171862)
“The books may say that nine-month-olds crawl, say their first words, and are afraid of strangers. Your exuberantly concrete and special nine-month-old hasnt read them. She may be walking already, not saying a word and smiling gleefully at every stranger she sees. . . . You can support her best by helping her learn what shes trying to learn, not what the books say a typical child ought to be learning.”
—Amy Laura Dombro (20th century)
“If I were just curious, it would be very hard to say to someone, I want to come to your house and have you talk to me and tell me the story of your life. I mean people are going to say, Youre crazy. Plus theyre going to keep mighty guarded. But the camera is a kind of license. A lot of people, they want to be paid that much attention and thats a reasonable kind of attention to be paid.”
—Diane Arbus (19231971)