Principal Ideal Domains
A principal ideal domain, or PID, is an integral domain in which every ideal is a principal ideal. A PID with only one non-zero maximal ideal is called a discrete valuation ring, or DVR, and every discrete valuation ring is a valuation ring. A valuation ring is a PID if and only if it is a DVR or a field. A value group is called discrete if and only if it is isomorphic to the additive group of the integers, and a valuation ring has a discrete valuation group if and only if it is a discrete valuation ring.
Read more about this topic: Valuation Ring
Famous quotes containing the words principal, ideal and/or domains:
“This place is the Devil, or at least his principal residence, they call it the University, but any other appellation would have suited it much better, for study is the last pursuit of the society; the Master eats, drinks, and sleeps, the Fellows drink, dispute and pun, the employments of the undergraduates you will probably conjecture without my description.”
—George Gordon Noel Byron (17881824)
“And he said, That ought to make you
An ideal one-girl farm,
And give you a chance to put some strength
On your slim-jim arm.”
—Robert Frost (18741963)
“I shall be a benefactor if I conquer some realms from the night, if I report to the gazettes anything transpiring about us at that season worthy of their attention,if I can show men that there is some beauty awake while they are asleep,if I add to the domains of poetry.”
—Henry David Thoreau (18171862)