Principal Ideal Domains
A principal ideal domain, or PID, is an integral domain in which every ideal is a principal ideal. A PID with only one non-zero maximal ideal is called a discrete valuation ring, or DVR, and every discrete valuation ring is a valuation ring. A valuation ring is a PID if and only if it is a DVR or a field. A value group is called discrete if and only if it is isomorphic to the additive group of the integers, and a valuation ring has a discrete valuation group if and only if it is a discrete valuation ring.
Read more about this topic: Valuation Ring
Famous quotes containing the words principal, ideal and/or domains:
“God should not be called an individual substance, since the principal of individuation is matter.”
—Thomas Aquinas (c. 12251274)
“He who wishes to teach us a truth should not tell it to us, but simply suggest it with a brief gesture, a gesture which starts an ideal trajectory in the air along which we glide until we find ourselves at the feet of the new truth.”
—José Ortega Y Gasset (18831955)
“I shall be a benefactor if I conquer some realms from the night, if I report to the gazettes anything transpiring about us at that season worthy of their attention,if I can show men that there is some beauty awake while they are asleep,if I add to the domains of poetry.”
—Henry David Thoreau (18171862)