Bounds of Functions
The definitions can be generalised to sets of functions.
Given a set S of functions with domain F and a partially ordered set as codomain, a function g with domain is an upper bound of S if for each function f in S and for each x in F. In particular, g is said to be an upper bound of f when S consists of only one function f (i.e. S is a singleton). This does not imply that f is a lower bound of g.
Read more about this topic: Upper And Lower Bounds
Famous quotes containing the words bounds of, bounds and/or functions:
“At bounds of boundless void.”
—Samuel Beckett (19061989)
“Great Wits are sure to Madness near allid
And thin Partitions do their Bounds divide;
Else, why should he, with Wealth and Honour blest,
Refuse his Age the needful hours of Rest?”
—John Dryden (16311700)
“Nobody is so constituted as to be able to live everywhere and anywhere; and he who has great duties to perform, which lay claim to all his strength, has, in this respect, a very limited choice. The influence of climate upon the bodily functions ... extends so far, that a blunder in the choice of locality and climate is able not only to alienate a man from his actual duty, but also to withhold it from him altogether, so that he never even comes face to face with it.”
—Friedrich Nietzsche (18441900)