Formal Definition
Suppose that U: D → C is a functor from a category D to a category C, and let X be an object of C. Consider the following dual (opposite) notions:
An initial morphism from X to U is an initial object in the category of morphisms from X to U. In other words, it consists of a pair (A, φ) where A is an object of D and φ: X → U(A) is a morphism in C, such that the following initial property is satisfied:
- Whenever Y is an object of D and f: X → U(Y) is a morphism in C, then there exists a unique morphism g: A → Y such that the following diagram commutes:
A terminal morphism from U to X is a terminal object in the comma category of morphisms from U to X. In other words, it consists of a pair (A, φ) where A is an object of D and φ: U(A) → X is a morphism in C, such that the following terminal property is satisfied:
- Whenever Y is an object of D and f: U(Y) → X is a morphism in C, then there exists a unique morphism g: Y → A such that the following diagram commutes:
The term universal morphism refers either to an initial morphism or a terminal morphism, and the term universal property refers either to an initial property or a terminal property. In each definition, the existence of the morphism g intuitively expresses the fact that (A, φ) is "general enough", while the uniqueness of the morphism ensures that (A, φ) is "not too general".
Read more about this topic: Universal Property
Famous quotes containing the words formal and/or definition:
“Two clergymen disputing whether ordination would be valid without the imposition of both hands, the more formal one said, Do you think the Holy Dove could fly down with only one wing?”
—Horace Walpole (17171797)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)