Universal Bundle - Use in The Study of Group Actions

Use in The Study of Group Actions

The total space of a universal bundle is usually written EG. These spaces are of interest in their own right, despite typically being contractible. For example in defining the homotopy quotient or homotopy orbit space of a group action of G, in cases where the orbit space is pathological (in the sense of being a non-Hausdorff space, for example). The idea, if G acts on the space X, is to consider instead the action on

Y = X×EG,

and corresponding quotient. See equivariant cohomology for more detailed discussion.

If EG is contractible then X and Y are homotopy equivalent spaces. But the diagonal action on Y, i.e. where G acts on both X and EG coordinates, may be well-behaved when the action on X is not.

Read more about this topic:  Universal Bundle

Famous quotes containing the words study, group and/or actions:

    of making many books there is no end; and much study is a weariness
    of the flesh.
    Let us hear the conclusion of the whole matter: Fear God, and keep
    his commandments: for this is the whole duty of man.
    Bible: Hebrew Ecclesiastes (l. XII, 13)

    We often overestimate the influence of a peer group on our teenager. While the peer group is most influential in matters of taste and preference, we parents are most influential in more abiding matters of standards, beliefs, and values.
    David Elkind (20th century)

    From a purely external point of view there is no will; and to find will in any phenomenon requires a certain empathy; we observe a man’s actions and place ourselves partly but not wholly in his position; or we act, and place ourselves partly in the position of an outsider.
    —T.S. (Thomas Stearns)