Proof
In Gaussian units, the general expression for Poisson's equation in electrostatics is
Here is the electric potential and is the electric field.
The uniqueness of the gradient of the solution (the uniqueness of the electric field) can be proven for a large class of boundary conditions in the following way.
Suppose that there are two solutions and . One can then define which is the difference of the two solutions. Given that both and satisfy Poisson's Equation, must satisfy
Using the identity
And noticing that the second term is zero one can rewrite this as
Taking the volume integral over all space specified by the boundary conditions gives
Applying the divergence theorem, the expression can be rewritten as
Where are boundary surfaces specified by boundary conditions.
Since and, then must be zero everywhere (and so ) when the surface integral vanishes.
This means that the gradient of the solution is unique when
The boundary conditions for which the above is true are:
- Dirichlet boundary condition: is well defined at all of the boundary surfaces. As such so at the boundary and correspondingly the surface integral vanishes.
- Neumann boundary condition: is well defined at all of the boundary surfaces. As such so at the boundary and correspondingly the surface integral vanishes.
- Modified Neumann boundary condition (where boundaries are specified as conductors with known charges): is also well defined by applying locally Gauss's Law. As such, the surface integral also vanishes.
- Mixed boundary conditions (a combination of Dirichlet, Neumann, and modified Neumann boundary conditions): the uniqueness theorem will still hold.
Read more about this topic: Uniqueness Theorem For Poisson's Equation
Famous quotes containing the word proof:
“The thing with Catholicism, the same as all religions, is that it teaches what should be, which seems rather incorrect. This is what should be. Now, if youre taught to live up to a what should be that never existedonly an occult superstition, no proof of this should beMthen you can sit on a jury and indict easily, you can cast the first stone, you can burn Adolf Eichmann, like that!”
—Lenny Bruce (19251966)
“O, popular applause! what heart of man
Is proof against thy sweet, seducing charms?”
—William Cowper (17311800)
“Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?”
—Henry David Thoreau (18171862)