Proving Uniqueness
Proving uniqueness turns out to be mostly easier than that of existence or expressibility. The most common technique to proving uniqueness is to assume there exists two quantities (say, a and b) that satisfies the condition given, and then logically deducing their equality, i.e. a = b.
As a simple high school example, to show x + 2 = 5 has only one solution, we assume there are two solutions first, namely, a and b, satisfying x + 2 = 5. Thus
By transitivity of equality,
By cancellation,
This simple example shows how a proof of uniqueness is done, the end result being the equality of the two quantities that satisfy the condition. We must say, however, that existence/expressibility must be proven before uniqueness, or else we cannot even assume the existence of those two quantities to begin with.
Read more about this topic: Uniqueness Quantification
Famous quotes containing the words proving and/or uniqueness:
“Anyone who seeks for the true causes of miracles, and strives to understand natural phenomena as an intelligent being, and not to gaze at them like a fool, is set down and denounced as an impious heretic by those, whom the masses adore as the interpreters of nature and the gods. Such persons know that, with the removal of ignorance, the wonder which forms their only available means for proving and preserving their authority would vanish also.”
—Baruch (Benedict)
“Until now when we have started to talk about the uniqueness of America we have almost always ended by comparing ourselves to Europe. Toward her we have felt all the attraction and repulsions of Oedipus.”
—Daniel J. Boorstin (b. 1914)