Topology of Uniform Spaces
Every uniform space X becomes a topological space by defining a subset O of X to be open if and only if for every x in O there exists an entourage V such that V is a subset of O. In this topology, the neighbourhood filter of a point x is {V : V∈Φ}. This can be proved with a recursive use of the existence of a "half-size" entourage. Compared to a general topological space the existence of the uniform structure makes possible the comparison of sizes of neighbourhoods: V and V are considered to be of the "same size".
The topology defined by a uniform structure is said to be induced by the uniformity. A uniform structure on a topological space is compatible with the topology if the topology defined by the uniform structure coincides with the original topology. In general several different uniform structures can be compatible with a given topology on X.
Read more about this topic: Uniform Space
Famous quotes containing the words uniform and/or spaces:
“The Federal Constitution has stood the test of more than a hundred years in supplying the powers that have been needed to make the Central Government as strong as it ought to be, and with this movement toward uniform legislation and agreements between the States I do not see why the Constitution may not serve our people always.”
—William Howard Taft (18571930)
“When I consider the short duration of my life, swallowed up in the eternity before and after, the little space which I fill and even can see, engulfed in the infinite immensity of spaces of which I am ignorant and which know me not, I am frightened and am astonished at being here rather than there. For there is no reason why here rather than there, why now rather than then.”
—Blaise Pascal (16231662)