Underwater Acoustics - History

History

Underwater sound has probably been used by marine animals for millions of years. The science of underwater acoustics began in 1490, when Leonardo Da Vinci wrote,

"If you cause your ship to stop and place the head of a long tube in the water and place the outer extremity to your ear, you will hear ships at a great distance from you."

In 1687 Isaac Newton wrote his Mathematical Principles of Natural Philosophy which included the first mathematical treatment of sound. The next major step in the development of underwater acoustics was made by Daniel Colladon, a Swiss physicist, and Charles Sturm, a French mathematician. In 1826, on Lake Geneva, they measured the elapsed time between a flash of light and the sound of a submerged ship's bell heard using an underwater listening horn. They measured a sound speed of 1435 meters per second over a 17 kilometer distance, providing the first quantitative measurement of sound speed in water. The result they obtained was within about 2% of currently accepted values. In 1877 Lord Rayleigh wrote the Theory of Sound and established modern acoustic theory.

The sinking of Titanic in 1912 and the start of World War I provided the impetus for the next wave of progress in underwater acoustics. Anti-submarine listening systems were developed. Between 1912 and 1914, a number of echolocation patents were granted in Europe and the U.S., culminating in Reginald A. Fessenden's echo-ranger in 1914. Pioneering work was carried out during this time in France by Paul Langevin and in Britain by A B Wood and associates. The development of both active ASDIC and passive sonar (SOund Navigation And Ranging) proceeded apace during the war, driven by the first large scale deployments of submarines. Other advances in underwater acoustics included the development of acoustic mines.

In 1919, the first scientific paper on underwater acoustics was published, theoretically describing the refraction of sound waves produced by temperature and salinity gradients in the ocean. The range predictions of the paper were experimentally validated by transmission loss measurements.

The next two decades saw the development of several applications of underwater acoustics. The fathometer, or depth sounder, was developed commercially during the 1920s. Originally natural materials were used for the transducers, but by the 1930s sonar systems incorporating piezoelectric transducers made from synthetic materials were being used for passive listening systems and for active echo-ranging systems. These systems were used to good effect during World War II by both submarines and anti-submarine vessels. Many advances in underwater acoustics were made which were summarised later in the series Physics of Sound in the Sea, published in 1946.

After World War II, the development of sonar systems was driven largely by the Cold War, resulting in advances in the theoretical and practical understanding of underwater acoustics, aided by computer-based techniques.

Read more about this topic:  Underwater Acoustics

Famous quotes containing the word history:

    Anything in history or nature that can be described as changing steadily can be seen as heading toward catastrophe.
    Susan Sontag (b. 1933)

    To summarize the contentions of this paper then. Firstly, the phrase ‘the meaning of a word’ is a spurious phrase. Secondly and consequently, a re-examination is needed of phrases like the two which I discuss, ‘being a part of the meaning of’ and ‘having the same meaning.’ On these matters, dogmatists require prodding: although history indeed suggests that it may sometimes be better to let sleeping dogmatists lie.
    —J.L. (John Langshaw)

    It is the true office of history to represent the events themselves, together with the counsels, and to leave the observations and conclusions thereupon to the liberty and faculty of every man’s judgement.
    Francis Bacon (1561–1626)