Type II Supernova - Hypernovae (collapsars)

Hypernovae (collapsars)

Hypernovae are a rare type of supernova substantially more luminous and energetic than standard supernovae. Examples are 1997ef (type Ic) and 1997cy (type IIn). Hypernovae are produced by more than one type of event: relativistic jets during formation of a black hole from fallback of material onto the neutron star core, the collapsar model; interaction with a dense envelope of circumstellar material, the CSM model; the highest mass pair instability supernovae; possibly others such as binary and quark star model.

Stars with initial masses between about 25 and 90 times the sun develop cores large enough that after a supernova explosion, some material will fall back onto the neutron star core and create a black hole. In many cases this reduces the luminosity of the supernova, and above 90 masses the star collapses directly into a black hole without a supernova explosion. However if the progenitor is spinning quickly enough the infalling material generates relativistic jets that emit more energy than the original explosion. They may also be seen directly if beamed towards us, giving the impression of an even more luminous object. In some cases these can produce gamma-ray bursts, although not all gamma-ray bursts are from supernovae.

In some cases a type II supernova occurs when the star is surrounded by a very dense cloud of material, most likely expelled during luminous blue variable eruptions. This material is shocked by the explosion and becomes more luminous than a standard supernova. It is likely that there is a range of luminosities for these type IIn supernovae with only the brightest qualifying as a hypernova.

Pair instability supernovae occur when an oxygen core in an extremely massive star becomes hot enough that gamma rays spontaneously produce electron-positron pairs. This causes the core to collapse, but where the collapse of an iron core causes endothermic fusion to heavier elements, the collapse of an oxygen core creates runaway exothermic fusion which completely unbinds the star. The total energy emitted depends on the initial mass, with much of the core being converted to 56Ni and ejected which then powers the supernova for many months. At the lower end stars of about 140 solar masses produce supernovae that are long-lived but otherwise typical, while the highest mass stars of around 250 solar masses produce supernovae that are extremely luminous and also very long lived; hypernovae. More massive stars die by photodisintegration. Only population III stars, with very low metallicity, can reach this stage. Stars with more heavy elements are more opaque and blow away their outer layers until they are small enough to explode as a normal type Ib/c supernova. It is thought that even in our own galaxy, mergers of old low metallicity stars may form massive stars capable of creating a pair instability supernova.

Read more about this topic:  Type II Supernova