Turbulence - Features

Features

Turbulence is highly characterized by the following features:

  • Irregularity: Turbulent flows are always highly irregular. This is why turbulence problems are always treated statistically rather than deterministically. Turbulent flow is always chaotic but not all chaotic flows are turbulent.
  • Diffusivity: The readily available supply of energy in turbluent flows tends to accelerate the homogenization (mixing) of fluid mixtures. The characteristic which is responsible for the enhanced mixing and increased rates of mass, momentum and energy transports in a flow is called "diffusivity".
  • Rotationality: Turbulent flows have non-zero vorticity and are characterized by a strong three-dimensional vortex generation mechanism known as vortex stretching. In fluid dynamics, they are essentially vortices subjected to stretching associated with a corresponding increase of the component of vorticity in the stretching direction—due to the conservation of angular momentum. On the other hand, vortex stretching is the core mechanism on which the turbulence energy cascade relies to establish the structure function. In general, the stretching mechanism implies thinning of the vortices in the direction perpendicular to the stretching direction due to volume conservation of fluid elements. As a result, the radial length scale of the vortices decreases and the larger flow structures break down into smaller structures. The process continues until the small scale structures are small enough to the extent where their kinetic energy is overwhelmed by the fluid's molecular viscosity and dissipated into heat. This is why turbulence is always rotational and three dimensional. For example, atmospheric cyclones are rotational but their substantially two-dimensional shapes do not allow vortex generation and so are not turbulent. On the other hand, oceanic flows are dispersive but essentially non rotational and therefore are not turbulent.
  • Dissipation: To sustain turbulent flow, a constant source of energy supply is required because turbulence dissipates rapidly as the kinetic energy is converted into internal energy by viscous shear stress.
  • Energy cascade: Turbulent flow can be realized as a superposition of a spectrum of velocity fluctuations and eddies upon a mean flow. The eddies are loosely defined as coherent patterns of velocity, vorticity and pressure. Turbulent flows may be viewed as made of an entire hierarchy of eddies over a wide range of length scales and the hierarchy can be described by the energy spectrum that measures the energy in velocity fluctuations for each wave number. The scales in the energy cascade are generally uncontrollable and highly non-symmetric. Nevertheless, based on these length scales these eddies can be divided into three categories.
  • Integral length scales: Largest scales in the energy spectrum. These eddies obtain energy from the mean flow and also from each other. Thus these are the energy production eddies which contain the most of the energy. They have the large velocity fluctuation and are low in frequency. Integral scales are highly anisotropic and are defined in terms of the normalized two-point velocity correlations. The maximum length of these scales is constrained by the characteristic length of the apparatus. For example, the largest integral length scale of pipe flow is equal to the pipe diameter. In the case of atmospheric turbulence, this length can reach up to the order of several hundreds kilometers.
  • Kolmogorov length scales: Smallest scales in the spectrum that form the viscous sub-layer range. In this range, the energy input from nonlinear interactions and the energy drain from viscous dissipation are in exact balance. The small scales are in high frequency which is why turbulence is locally isotropic and homogeneous.
  • Taylor microscales: The intermediate scales between the largest and the smallest scales which make the inertial subrange. Taylor micro-scales are not dissipative scale but passes down the energy from the largest to the smallest without dissipation. Some literatures do not consider Taylor micro-scales as a characteristic length scale and consider the energy cascade contains only the largest and smallest scales; while the later accommodate both the inertial sub-range and the viscous-sub layer. Nevertheless, Taylor micro-scales is often used in describing the term “turbulence” more conveniently as these Taylor micro-scales play a dominant role in energy and momentum transfer in the wavenumber space.

Turbulent diffusion is usually described by a turbulent diffusion coefficient. This turbulent diffusion coefficient is defined in a phenomenological sense, by analogy with the molecular diffusivities, but it does not have a true physical meaning, being dependent on the flow conditions, and not a property of the fluid itself. In addition, the turbulent diffusivity concept assumes a constitutive relation between a turbulent flux and the gradient of a mean variable similar to the relation between flux and gradient that exists for molecular transport. In the best case, this assumption is only an approximation. Nevertheless, the turbulent diffusivity is the simplest approach for quantitative analysis of turbulent flows, and many models have been postulated to calculate it. For instance, in large bodies of water like oceans this coefficient can be found using Richardson's four-third power law and is governed by the random walk principle. In rivers and large ocean currents, the diffusion coefficient is given by variations of Elder's formula.

Turbulence causes the formation of eddies of many different length scales. Most of the kinetic energy of the turbulent motion is contained in the large-scale structures. The energy "cascades" from these large-scale structures to smaller scale structures by an inertial and essentially inviscid mechanism. This process continues, creating smaller and smaller structures which produces a hierarchy of eddies. Eventually this process creates structures that are small enough that molecular diffusion becomes important and viscous dissipation of energy finally takes place. The scale at which this happens is the Kolmogorov length scale.

Although it is possible to find some particular solutions of the Navier-Stokes equations governing fluid motion, all such solutions are unstable at large Reynolds numbers. Sensitive dependence on the initial and boundary conditions makes fluid flow irregular both in time and in space so that a statistical description is needed. Russian mathematician Andrey Kolmogorov proposed the first statistical theory of turbulence, based on the aforementioned notion of the energy cascade (an idea originally introduced by Richardson) and the concept of self-similarity. As a result, the Kolmogorov microscales were named after him. It is now known that the self-similarity is broken so the statistical description is presently modified. Still, a complete description of turbulence remains one of the unsolved problems in physics.

According to an apocryphal story, Werner Heisenberg was asked what he would ask God, given the opportunity. His reply was: "When I meet God, I am going to ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the first." A similar witticism has been attributed to Horace Lamb (who had published a noted text book on Hydrodynamics)—his choice being quantum electrodynamics (instead of relativity) and turbulence. Lamb was quoted as saying in a speech to the British Association for the Advancement of Science, "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic."

A more detailed presentation of turbulence with emphasis on high-Reynolds number flow, intended for a general readership of physicists and applied mathematicians, is found in the Scholarpedia articles. and by G. Falkovich.

Read more about this topic:  Turbulence

Famous quotes containing the word features:

    The features of our face are hardly more than gestures which force of habit made permanent. Nature, like the destruction of Pompeii, like the metamorphosis of a nymph into a tree, has arrested us in an accustomed movement.
    Marcel Proust (1871–1922)

    It is a tribute to the peculiar horror of contemporary life that it makes the worst features of earlier times—the stupefaction of the masses, the obsessed and driven lives of the bourgeoisie—seem attractive by comparison.
    Christopher Lasch (b. 1932)

    Each reader discovers for himself that, with respect to the simpler features of nature, succeeding poets have done little else than copy his similes.
    Henry David Thoreau (1817–1862)