Truss - Analysis of Trusses

Analysis of Trusses

Because the forces in each of its two main girders are essentially planar, a truss is usually modelled as a two-dimensional plane frame. If there are significant out-of-plane forces, the structure must be modelled as a three-dimensional space.

The analysis of trusses often assumes that loads are applied to joints only and not at intermediate points along the members. The weight of the members is often insignificant compared to the applied loads and so is often omitted. If required, half of the weight of each member may be applied to its two end joints. Provided the members are long and slender, the moments transmitted through the joints are negligible and they can be treated as "hinges" or 'pin-joints'. Every member of the truss is then in pure compression or pure tension – shear, bending moment, and other more complex stresses are all practically zero. This makes trusses easier to analyze. This also makes trusses physically stronger than other ways of arranging material – because nearly every material can hold a much larger load in tension and compression than in shear, bending, torsion, or other kinds of force.

Structural analysis of trusses of any type can readily be carried out using a matrix method such as the direct stiffness method, the flexibility method or the finite element method.

Read more about this topic:  Truss

Famous quotes containing the word analysis:

    The spider-mind acquires a faculty of memory, and, with it, a singular skill of analysis and synthesis, taking apart and putting together in different relations the meshes of its trap. Man had in the beginning no power of analysis or synthesis approaching that of the spider, or even of the honey-bee; but he had acute sensibility to the higher forces.
    Henry Brooks Adams (1838–1918)