Truncated Heptagonal Tiling - Related Polyhedra and Tilings

Related Polyhedra and Tilings

This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and Coxeter group symmetry.

Dimensional family of truncated polyhedra and tilings: 3.2n.2n
Symmetry
*n32
Spherical Euclidean Hyperbolic...
*232

D3h
*332

Td
*432

Oh
*532

Ih
*632

P6m
*732

*832
...
*∞32

Truncated
figures

3.4.4

3.6.6

3.8.8

3.10.10

3.12.12

3.14.14

3.16.16

3.∞.∞
Coxeter
Schläfli

t0,1{2,3}

t0,1{3,3}

t0,1{4,3}

t0,1{5,3}

t0,1{6,3}

t0,1{7,3}

t0,1{8,3}

t0,1{∞,3}
Uniform dual figures
Triakis
figures

V3.4.4

V3.6.6

V3.8.8

V3.10.10

V3.12.12

V3.14.14

V3.16.16

V3.∞.∞
Coxeter

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

Uniform heptagonal/triangular tilings
Symmetry:, (*732) +, (732)
{7,3} t0,1{7,3} t1{7,3} t1,2{7,3} t2{7,3} t0,2{7,3} t0,1,2{7,3} s{7,3}
Uniform duals
V73 V3.14.14 V3.7.3.7 V6.6.7 V37 V3.4.7.4 V4.6.14 V3.3.3.3.7

Read more about this topic:  Truncated Heptagonal Tiling

Famous quotes containing the word related:

    So universal and widely related is any transcendent moral greatness, and so nearly identical with greatness everywhere and in every age,—as a pyramid contracts the nearer you approach its apex,—that, when I look over my commonplace-book of poetry, I find that the best of it is oftenest applicable, in part or wholly, to the case of Captain Brown.
    Henry David Thoreau (1817–1862)